Comparison of porous starches obtained from different enzyme types and levels.

نویسندگان

  • Yaiza Benavent-Gil
  • Cristina M Rosell
چکیده

The objective was to compare the action of different hydrolases for producing porous corn starches. Amyloglucosidase (AMG), α-amylase (AM), cyclodextrin-glycosyltransferase (CGTase) and branching enzyme (BE) were tested using a range of concentrations. Microstructure, adsorptive capacity, pasting and thermal properties were assessed on the porous starches. SEM micrographs showed porous structures with diverse pore size distribution and pore area depending on the enzyme type and its level; AMG promoted the largest holes. Adsorptive capacity was significantly affected by enzymatic modification being greater influenced by AMG activity. Unexpectedly, amylose content increased in the starch treated with AMG and BE, and the opposite trend was observed in AM and CGTase treated samples, suggesting different mode of action. A heatmap illustrated the diverse pasting properties of the different porous starches, which also showed significant different thermal properties, with lower To and Tp. Porous starch properties could be modulated by using different enzymes and concentrations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compaction Properties of Three Types of Starch

A study has been made of the compaction properties of two experimental starches, namely yam starch obtained from Dioscorea rotundata and rice starch obtained from Oryza sativa and the mechanical properties of their tablets, in comparison with those of official corn starch. The influences of the physical and geometric properties of the starch particles on the compression properties of the starch...

متن کامل

Compaction Properties of Three Types of Starch

A study has been made of the compaction properties of two experimental starches, namely yam starch obtained from Dioscorea rotundata and rice starch obtained from Oryza sativa and the mechanical properties of their tablets, in comparison with those of official corn starch. The influences of the physical and geometric properties of the starch particles on the compression properties of the starch...

متن کامل

The immobilization of laccase enzyme from Trametes versicolor on the surface of porous zinc oxide nanoparticles and studying features of the immobilized enzyme

The laccase enzyme is the largest group of Oxidoreductase enzymes and is capable of oxidizing a wide range of organic substrates to water along with molecular oxygen resuscitation. ZnO nanoparticles are known for their specific properties such as chemical stability, high electrochemical coupling rates, and wide range of absorption of radiation as multifunctional compounds. In this study, ZnO po...

متن کامل

The immobilization of laccase enzyme from Trametes versicolor on the surface of porous zinc oxide nanoparticles and studying features of the immobilized enzyme

The laccase enzyme is the largest group of Oxidoreductase enzymes and is capable of oxidizing a wide range of organic substrates to water along with molecular oxygen resuscitation. ZnO nanoparticles are known for their specific properties such as chemical stability, high electrochemical coupling rates, and wide range of absorption of radiation as multifunctional compounds. In this study, ZnO po...

متن کامل

Vibration Analysis of Different Types of Porous FG Conical Sandwich Shells in Various Thermal Surroundings

Vibration behavior of different types of porous functionally graded (FG) conical sandwich shells are investigated based on a modified high order sandwich shells theory for the first time. Sandwich shell includes FG face sheets covering a homogeneous core and the second one includes homogeneous face sheets and a FG core. Power law rule modified by considering two types of porosity distributions ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Carbohydrate polymers

دوره 157  شماره 

صفحات  -

تاریخ انتشار 2017